3.4 Operation in the Reverse Breakdown Region - Zener Diodes (pp. 167-171)

A Zener Diode \rightarrow

The 3 technical differences between a junction diode and a Zener diode:
1.
2.
3.

The practical difference between a Zener diode and "normal" junction diodes:
$\therefore 1$.
2.

HO: Zener Diode Notation

A. Zener Diode Models

Q: How do we analyze zener diodes circuits?

A: Same as junction diode circuits-

Big problem ->

Big solution \rightarrow

HO: Zener Diode Models

Example: Zener Circuit Analysis
B. Voltage Regulation

Say that we have a 20 V supply but need to place 10 V across some load:

The solution seems easy! \rightarrow

This, in fact is a very bad solution-

HO: The Shunt Regulator
HO: Line Regulation

HO: Load Regulation
Example: The Shunt Regulator

Zener Diode Notation

To distinguish a zener diode from conventional junction diodes, we use a modified diode symbol:

Generally speaking, a zener diode will be operating in either breakdown or reverse bias mode.

For both these two operating regions, the cathode voltage will be greater than the anode voltage, i.e.,:

$$
v_{0}<0 \quad \text { (for r.b. and bd) }
$$

Likewise, the diode current (although often tiny) will flow from cathode to anode for these two modes:

$$
i_{0}<0 \quad(\text { for r.b. and bd) }
$$

Q: Yikes! Won't the the numerical values of both io and v_{0} be negative for a zener diode (assuming only rb and b.d. modes).

* In other words, for a Zener diode, we denote current flowing from cathode to anode as positive.
* Likewise, we denote diode voltage as the potential at the cathode with respect to the potential at the anode.

Note that each of the above two statements are precisely opposite to the "conventional" junction diode notation that we have used thus far:

$$
v_{Z}=-v_{D} \quad \text { and } \quad i_{Z}=-i_{D}
$$

Two ways of expressing the same junction diode curve.

The i_{z} versus v_{z} curve for a zener diode is therefore:

Thus, in forward bias (as unlikely as this is):

$$
i_{Z}=-I_{s} \exp \left(\frac{-v_{Z}}{n V_{T}}\right)
$$

or approximately:

$$
v_{z} \approx-0.7 \vee \text { and } i_{z}<0
$$

Likewise, in reverse bias:

$$
i_{z} \approx I_{s} \quad \text { and } \quad 0<v_{z}<V_{Z K}
$$

And finally, for breakdown:

$$
i_{z}>0 \quad \text { and } \quad v_{z} \approx V_{Z K}
$$

Zener Diode Models

The conventional diode models we studied earlier were based on junction diode behavior in the forward and reverse bias regions-they did not "match" the junction diode behavior in breakdown!

However, we assume that Zener diodes most often operate in breakdown-we need new diode models!

Specifically, we need models that match junction/Zener diode behavior in the reverse bias and breakdown regions.

We will study two important zener diode models, each with familiar names!

1. The Constant Voltage Drop (CVD) Zener Model
2. The Piece-Wise Linear (PWL) Zener Model

The Zener CVD Model

Let's see, we know that a Zener Diode in reverse bias can be described as:

$$
i_{z} \approx I_{s} \approx 0 \text { and } v_{z}<V_{z K}
$$

Whereas a Zener in breakdown is approximately stated as:

$$
i_{z}>0 \quad \text { and } \quad v_{z} \approx V_{z k}
$$

Q: Can we construct a model which behaves in a similar manner??

A: Yes! The Zener CVD model behaves precisely in this way!

Replace:
$\overbrace{v_{z}}^{i_{z}}$ with:

Analyzing this Zener CVD model, we $i_{z}=0 \mid+\quad$ find that if the model voltage v_{Z} is less than $V_{Z K}$ (i.e., $v_{Z}<V_{Z K}$), then the ideal diode will be in reverse bias, and thus
$v_{d}^{i}<0$
 the model current iz will equal zero.
In other words:

$$
i_{z}=0 \quad \text { and } \quad v_{z}<V_{Z K}
$$

Just like a Zener diode in reverse bias!

Likewise, we find that if the model current is positive ($i z>0$), then the ideal diode must be forward biased, and thus the model voltage must be $v_{Z}=V_{Z K}$. In other words:

$$
i_{z}>0 \quad \text { and } \quad v_{z}=V_{z k}
$$

Just like a Zener diode in breakdown!

Problem: The voltage across a zener diode in breakdown is NOT EXACTLY equal to $V_{Z K}$ for all $i_{z}>0$. The CVD is an approximation.

In reality, v_{z} increases a very small (tiny) amount as i_{z} increases.

Thus, the CVD model causes a small error, usually acceptable-but for some cases not!

For these cases, we require a better model:
$\rightarrow \quad$ The Zener (PWL) Piece-Wise Linear model.

The Zener Piecewise Linear Model

Please Note:

* The PWL model includes a very small series resistor, such that the voltage across the model v_{z} increases slightly with increasing i_{z}.
* This small resistance r_{z} is called the dynamic resistance.
* The voltage source $V_{z o}$ is not equal to the zener breakdown voltage $V_{Z K}$, however, it is typically very close!
$\begin{aligned} i_{z} & =0 \downarrow^{+}+ \\ & +\quad+\quad .\end{aligned}$
$v_{d}^{\prime}<0$
-

v_{70}
-
r_{i}

Analyzing this Zener PWL model, we find that if the model voltage v_{z} is less than $V_{z o}$ (i.e., $v_{z}<V_{z 0}$), then the ideal diode will be in reverse bias, and the model current $i z$ will equal zero. In other words:
$i_{z}=0$ and $v_{z}<V_{z 0} \approx V_{z K}$

Just like a Zener diode in reverse bias!
Likewise, we find that if the model current is positive ($i z>0$), then the ideal diode must be forward biased, and thus: $i_{z}>0$ and $v_{z}=V_{z 0}+i_{z} r_{z}$
Note that the model voltage v_{z} will be near $V_{Z K}$, but will increase slightly as the model current increases.

Just like a Zener diode in breakdown!

Q: How do we construct this PWL model (i.e., find $V_{z 0}$ and r_{z})?
A: Pick two points on the zener diode curve (v_{1}, i_{1}) and (v_{2}, i_{2}), and then select r_{z} and $V_{z o}$ so that the PWL model line intersects them.

$$
V_{z 0}=v_{1}-i_{1} r_{z} \quad \text { or } \quad V_{z 0}=v_{2}-i_{2} r_{z}
$$

Example: Zener Diode Circuit Analysis

Consider the circuit below:

Note that the load resistor R_{L} is in parallel with the Zener diode, so that the voltage V_{0} across this load resistor is equal to the Zener diode voltage v_{z}.

Q: So just what is the value of voltage V_{o} ?

A: Let's replace the Zener diode with a Zener CVD model and find out!

Q: Yikes! We have an IDEAL diode circuit!

A: Yes! We analyze it precisely like we did in section 3.1remember, there are no Zener diodes in the circuit above!

ASSUME: IDEAL diode is forward biased.
ENFORCE: $v_{d}^{\prime}=0$

ANALYZE:

From KVL:

$$
v_{z}=v_{0}=v_{0}^{i}+8.0=0+8.0=8.0 \mathrm{~V}
$$

From KCL:

$$
i=i_{0}^{i}+i_{L}
$$

where from Ohm's Law:

$$
i=\frac{15-8.0}{0.5}=14 \mathrm{~mA}
$$

and:

$$
i_{L}=\frac{8.0}{1}=8.0 \mathrm{~mA}
$$

Therefore:

$$
\begin{aligned}
i_{0}^{i} & =i-i_{L} \\
& =14-8 \\
& =6 \mathrm{~mA}
\end{aligned}
$$

CHECK:

$$
i_{0}^{i}=6 m A>0
$$

Look at what this means!
\rightarrow The voltage across load resistor R_{L} is equal to the Zener breakdown voltage $V_{Z K}-$ regardless of the value of load resistor R_{L} or source voltage V_{S} (provided, of course, that the Zener diode is in breakdown)!

This is an example of a primary application of Zener diodesvoltage regulation.

We call this particular regulator circuit the shunt regulator.

The Shunt Regulator

The shunt regulator is a voltage regulator. That is, a device that keeps the voltage across some load resistor $\left(R_{L}\right)$ constant.

Q: Why would this voltage not be a constant?
A: Two reasons:
(1) the source voltage V_{s} may vary and change with time.
(2) The load R_{L} may also vary and change with time. In other words, the current i_{L} delivered to the load may change.

What can we do to keep load voltage V_{0} constant?
\Rightarrow Employ a Zener diode in a shunt regulator circuit!

Let's analyze the shunt regulator circuit in terms of Zener breakdown voltage $V_{Z K}$, source voltage V_{S}, and load resistor R_{L}.

Replacing the Zener diode with a Zener CVD model, we ASSUME the ideal diode is forward biased, and thus ENFORCE $v_{o}^{i}=0$.

ANALYZE:

From KVL:

$$
v_{z}=V_{O}=v_{D}^{i}+V_{z K}=V_{z K}
$$

From KCL:

$$
i=i_{D}^{i}+i_{L}
$$

where:

$$
i=\frac{V_{s}-V_{Z K}}{R}
$$

and:

$$
i_{L}=\frac{V_{Z K}}{R_{L}}
$$

Therefore:

$$
\begin{aligned}
i_{D}^{i} & =i-i_{L} \\
& =\frac{V_{S}-V_{Z K}}{R}-\frac{V_{Z K}}{R_{L}} \\
& =\frac{V_{s}}{R}-\frac{V_{Z K}\left(R+R_{L}\right)}{R R_{L}}
\end{aligned}
$$

CHECK:

Note we find that ideal diode is forward biased if:

$$
i_{0}^{i}=\frac{V_{S}}{R}-\frac{V_{z K}\left(R+R_{L}\right)}{R R_{L}}>0
$$

or therefore:

$$
\begin{aligned}
\frac{V_{S}}{R}-\frac{V_{z K}\left(R+R_{L}\right)}{R R_{L}}>0 \\
\frac{V_{S}}{R}>\frac{V_{z K}\left(R+R_{L}\right)}{R R_{L}} \\
V_{S} \frac{R_{L}}{R+R_{L}}>V_{z K}
\end{aligned}
$$

Hence, the Zener diode may not be in breakdown (i.e., the ideal diode may not be f.b.) if V_{s} or R_{L} are too small, or shunt resistor R is too large!

Summarizing, we find that if:

$$
V_{S} \frac{R_{L}}{R+R_{L}}>V_{Z K}
$$

then:

1. The Zener diode is in breakdown.
2. The load voltage $V_{O}=V_{Z K}$.
3. The load current is $i_{L}=V_{Z K} / R_{L}$.
4. The current through the shunt resistor R is
$i=\left(V_{s}-V_{z K}\right) / R$.
5. The current through the Zener diode is $i_{z}=i-i_{L}>0$.

We find then, that if the source voltage V_{s} increases, the current i through shunt resistor R will likewise increase. However, this extra current will result in an equal increase in the Zener diode current iz-thus the load current (and therefore load voltage V_{o}) will remain unchanged!

Similarly, if the load current $i<$ increases (i.e., R_{L} decreases), then the Zener current i_{z} will decrease by an equal amount. As a result, the current through shunt resistor R (and therefore the load voltage $V o$) will remain unchanged!

Q: You mean that V_{0} stays perfectly constant, regardless of source voltage V_{s} or load current i??

A: Well, Vo remains approximately constant, but it will change a tiny amount when V_{s} or i_{L} changes.

To determine precisely how much the load voltage V_{0} changes, we will need to use a more precise Zener diode model (i.e., the Zener PWL)!

Line Regulation

Since the Zener diode in a shunt regulator has some small (but non-zero) dynamic resistance r_{z}, we find that the load voltage V_{0} will have a small dependence on source voltage V_{s}.

In other words, if the source voltage V_{s} increases (decreases), the load voltage V_{0} will likewise increase (decrease) by some very small amount.

Q: Why would the source voltage Vs ever change?
A: There are many reasons why V_{s} will not be a perfect constant with time. Among them are:

1. Thermal noise
2. Temperature drift
3. Coupled 60 Hz signals (or digital clock signals)

As a result, it is more appropriate to represent the total source voltage as a time-varying signal ($v_{s}(t)$), consisting of both a DC component (V_{s}) and a small-signal component $\left(\Delta v_{s}(t)\right):$
$V_{s} \xrightarrow{V_{s}} \xrightarrow{V_{s}(t)=V_{s}+\Delta v_{s}(t)}$

As a result of the small-signal source voltage, the total load voltage is likewise time-varying, with both a $D C\left(V_{0}\right)$ and smallsignal (Δv_{o}) component:

$$
v_{o}(t)=V_{0}+\Delta v_{o}(t)
$$

So, we know that the DC source V_{s} produces the DC load voltage V_{o}, whereas the small-signal source voltage Δv_{s} results in the small-signal load voltage Δv_{0}.

Q: Just how are Δv_{s} and Δv_{o} related? I mean, if Δv_{s} equals, say, 500 mV , what will value of Δv_{o} be?

A: Determining this answer is easy! We simply need to perform a small-signal analysis.

In other words, we first replace the Zener diode with its Zener PWL model.

We then turn off all the DC sources (including $V_{z o}$) and analyze the remaining small-signal circuit!

From voltage division, we find: $\quad \Delta v_{o}=\Delta v_{s}\left(\frac{r_{Z} \| R_{L}}{R+r_{Z} \| R_{L}}\right)$
However, recall that the value of a Zener dynamic resistance r_{Z} is very small. Thus, we can assume that $r_{Z} \gg R_{L}$, and therefore $r_{z} \| R_{L} \approx r_{z}$, leading to:

$$
\begin{aligned}
\Delta v_{0} & =\Delta v_{s}\left(\frac{r_{z} \| R_{L}}{R+r_{z} \| R_{L}}\right) \\
& \approx \Delta v_{s}\left(\frac{r_{Z}}{r_{Z}+R}\right)
\end{aligned}
$$

Rearranging, we find:

$$
\frac{\Delta v_{0}}{\Delta v_{s}}=\frac{r_{z}}{r_{z}+R} \doteq \text { line regulation }
$$

This equation describes an important performance parameter for shunt regulators. We call this parameter the line regulation.

* Line regulation allows us to determine the amount that the load voltage changes (Δv_{o}) when the source voltage changes $\left(\Delta v_{s}\right)$.
* For example, if line regulation is 0.002 , we find that the load voltage will increase 1 mV when the source voltage increases 500 mV (i.e., $\Delta v_{o}=0.002 \Delta v_{s}=0.002(0.5)=0.001 \mathrm{~V}$).
* Ideally, line regulation is zero. Since dynamic resistance r_{z} is typically very small (i.e., $r_{z} \ll R$), we find that the line regulation of most shunt regulators is likewise small (this is a good thing!).

Load Regulation

For voltage regulators, we typically define a load R_{L} in terms of its current i_{L}, where:

$$
i_{L}=\frac{V_{0}}{R_{L}}
$$

Note that since the load (i.e., regulator) voltage v_{o} is a constant (approximately), specifying ic is equivalent to specifying R_{L}, and vice versa!

Now, since the Zener diode in a shunt regulator has some small (but non-zero) dynamic resistance r_{z}, we find that the load voltage vo will also have a very small dependence on load resistance R_{L} (or equivalently, load current i_{L}).

In fact, if the load current i_{L} increases (decreases), the load voltage vo will actually decrease (increase) by some small amount.

Q: Why would the load current iL ever change?

A: You must realize that the load resistor R_{L} simply models a more useful device. The "load" may in fact be an amplifier, or a component of a cell phone, or a circuit board in a digital computer.

These are all dynamic devices, such that they may require more current at some times than at others (e.g., the computational load increases, or the cell phone begins to transmit).

As a result, it is more appropriate to represent the total load current as a time-varying signal ($i_{L}(t)$), consisting of both a DC component (I_{L}) and a small-signal component ($\Delta i_{L}(t)$):

$$
i_{L}(t)=I_{L}+\Delta i_{L}(t)
$$

This small-signal load current of course leads to a load voltage that is likewise time-varying, with both a $D C\left(V_{0}\right)$ and smallsignal (Δv_{o}) component:

$$
v_{0}(t)=V_{0}+\Delta v_{o}(t)
$$

So, we know that the $D C$ load current I_{L} produces the $D C$ load voltage V_{o}, whereas the small-signal load current $\Delta i_{L}(t)$ results in the small-signal load voltage Δv_{o}.

We can replace the load resistor with current sources to represent this load current:

Q: Just how are Δv_{s} and Δv_{o} related? I mean, if Δi_{ι} equals, say, 50 mA , what will value of Δv_{o} be?

A: Determining this answer is easy! We simply need to perform a small-signal analysis.

In other words, we first replace the Zener diode with its Zener PWL model.

We then turn off all the DC sources (including $V_{z o}$) and analyze the remaining small-signal circuit!

From Ohm's Law, it is evident that:

$$
\begin{aligned}
\Delta v_{0} & =-\Delta i_{L}\left(r_{Z} \| R\right) \\
& =-\Delta i_{L}\left(\frac{r_{Z} R}{r_{z}+R}\right)
\end{aligned}
$$

Rearranging, we find:

$$
\text { load regulation }=\frac{\Delta v_{o}}{\Delta i_{L}}=-\frac{r_{z} R}{r_{z}+R}=-r_{z} \| R \approx-r_{z} \quad[\text { Ohms }]
$$

This equation describes an important performance parameter for shunt regulators. We call this parameter the load regulation.

* Note load regulation is expressed in units of resistance (e.g., Ω).
* Note also that load regulation is a negative value. This means that increasing i_{L} leads to a decreasing v_{O} (and vice versa).
* Load regulation allows us to determine the amount that the load voltage changes (Δv_{o}) when the load current changes (Δi_{L}).
* For example, if load regulation is $-0.0005 \mathrm{~K} \Omega$, we find that the load voltage will decrease 25 mV when the load current increases 50 mA (i.e., $\Delta v_{o}=-0.0005 \Delta i_{L}=-0.0005(50)=-0.025 \mathrm{~V}$).
* Ideally, load regulation is zero. Since dynamic resistance r_{z} is typically very small (i.e., $r_{z} \ll R$), we find that the load regulation of most shunt regulators is likewise small (this is a good thing!).

Example: The Shunt

Regulator

Consider the shunt regulator, built using a zener diode with $V_{z k}=15.0 \mathrm{~V}$ and incremental resistance $r_{z}=5 \Omega$:

1. Determine R if the largest possible value of i_{L} is 20 mA .
2. Using the value of R found in part 1 determine i_{z} if $R_{L}=1.5 \mathrm{~K}$.
3. Determine the change in v_{o} if v_{s} increases one volt.
4. Determine the change in v_{o} if i_{L} increases 1 mA .

Part 1:

From KCL we know that $i=i_{z}+i_{\text {L }}$.
We also know that for the diode to remain in breakdown, the zener current must be positive.

$$
\text { i.e., } i_{z}=i-i_{L}>0
$$

Therefore, if i_{L} can be as large as 20 mA , then i must be greater than 20 mA for i_{z} to remain greater than zero.
i.e. $i>20 \mathrm{~mA}$

Q: But, what is i??

A: Use the zener CVD model to analyze the circuit.

Therefore from Ohm's Law:

$$
i=\frac{V_{s}-V_{z K}}{R}=\frac{25-15}{R}=\frac{10}{R}
$$

and thus i> 20 mA if:

$$
R<\frac{10}{20}=0.5 \mathrm{~K}=500 \Omega
$$

Note we want R to be as large as possible, as large R improves both line and load regulation.

Therefore, set $R=500 \Omega=0.5 \mathrm{~K}$

Part 2:

Again, use the zener CVD model, and enforce $v_{D}^{i}=0$:

Analyzing, from KCL :

$$
i_{0}^{i}=i-i_{L}
$$

and from Ohm's Law:

$$
\begin{gathered}
i=\frac{V_{s}-V_{Z K}}{R}=\frac{25.0-15.0}{0.5}=20.0 \mathrm{~mA} \\
i_{L}=\frac{V_{Z K}}{R_{L}}=\frac{15.0}{1.5}=10.0 \mathrm{~mA}
\end{gathered}
$$

Therefore $i_{0}^{i}=i-i_{L}=20-10=10.0 \mathrm{~mA}\left(\therefore i_{0}^{i}=10>0 \vee\right)$

And thus we estimate $i_{z}=i_{0}^{i}=10.0 \mathrm{~mA}$

Part 3:

The shunt regulator line regulation is:

$$
\text { Line Regulation }=\frac{r_{z}}{R+r_{z}}=\frac{5}{500+5}=0.01
$$

Therefore if $\Delta v_{s}=1 \mathrm{~V}$, then $\Delta v_{o}=(0.01) \Delta v_{s}=0.01 \mathrm{~V}$
Part 4:
The shunt regulator load regulation is:

$$
\text { Load Regulation }=\frac{-R r_{z}}{R+r_{z}}=\frac{-(500) 5}{500+5}=-4.95 \Omega
$$

Therefore if $\Delta i_{L}=1 \mathrm{~mA}$, then $\Delta v_{o}=-(4.95) \Delta i_{L}=-4.95 \mathrm{mV}$

